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The Representation of Lattice Quadrature Rules 
as Multiple Sums 

By Ian H. Sloan and James N. Lyness* 

Abstract. We provide a classification of lattice rules. Applying elementary group the- 
ory, we assign to each 8-dimensional lattice rule a rank m and a set of positive integer 
invariants nI, nl2,.. -, n8. The number v(Q) of abscissas required by the rule is the prod- 
uct n1 n2 ... n8, and the rule may be expressed in a canonical form with m independent 
summations. Under this classification an N-point number-theoretic rule in the sense of 
Korobov and Conroy is a rank m = 1 rule having invariants N, 1, 1,. .., 1, and the prod- 
uct trapezoidal rule using n8 points is a rank m = s rule having invariants n, n, . .. , n. 
Besides providing a canonical form, we give some of the properties of copy rules and of 
projections into lower dimensions. 

1. Introduction. In previous papers, Sloan [11], Sloan and Kachoyan [12], 
lattice rules for numerical quadrature over the 8-dimensional unit cube were intro- 
duced and defined. 

A lattice rule employs as abscissas all points on an infinite lattice that lie within 
and on the boundary of the unit cube. Those within are assigned equal weight, 
and those on the boundary are assigned an appropriately reduced weight. Proper 
definitions and background material are presented in Section 2. There it is shown 
that the form 

(l.l) Qf ~~nIn2 ...ntl j1=1 jt n, nt) 

where f is a periodic extension of f, and Z1, Z2,... ,Zt are vectors with integer 
components, is a lattice rule. The expression (1.1) is computationally convenient, 
but far from unique. This lack of uniqueness hinders computer searches for lattice 
rules with appropriate qualities. In this paper we seek representations of lattice 
rules in which at least the numbers t,nl,n2,... ,nt are uniquely determined; the 
vectors z1, ... I, Zt remain nonunique. First, however, we need to gain greater insight 
into the structure of lattice rules. 

To this end we employ elementary group theory. The concepts we require are 
collected together in Section 3. The connection with group theory is apparent, in 
that under appropriate circumstances the ith summation in (1.1) corresponds to a 
cyclic group of order ni, and the set of abscissas A(Q) is the direct sum of t such 
cyclic groups. 
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In Section 4 this theory is exploited to classify lattice rules. As a result, we are 
able to show that every lattice rule can be written in the form (1.1). Moreover, we 
are able to ascribe to any lattice rule a unique rank m and a unique set of invariants 
nli, n2, ... , n -the rank being the least value of t in an expression of the form (1.1). 
Our standard form of the lattice rule uses the m leading invariants n1, n2, . . ., n, 
together with suitable integer vectors z1, Z2... , Zm, in the expression (1.1) with t 
set equal to m. The remaining invariants nm+1,... , n, all have the trivial value 1. 

Using this classification, the 'number-theoretic' rules of Korobov [8], Hlawka [4], 
Conroy [1], Zaremba [13], Keast [7], Niederreiter [10], and Hua and Wang [5], which 
are of the form 

(1.2) Qf N E f ( N) 
j= 1 

are rules of rank 1 and invariants N, 1,1,... , 1; and the s-dimensional product 
trapezoidal rule 

(1.3) T (n)f= 1 - ni 
X j.)) 

ji =0 j.=O 

is a rule of rank s and invariants n, n, ... , n. 
Section 5 explores the structure of rules obtained by the projection of lattice 

rules onto lower-dimensional unit cubes. Section 6 discusses n8-copy rules. Among 
other things, we show that a lattice rule is of rank s if and only if it is an n8 copy 
of a lattice rule with smaller rank. 

The scope of this paper is confined to the theory of the structure of lattice rules. 
Examples are chosen simply to illustrate this theory. This forms a preliminary to 
the important task of determining rules for use in practice; that problem will be 
taken up in a later paper. 

2. Lattice Rules. We denote the integral to be evaluated by 

(2.1) If = f(x)dx, 

where C3 is the closed s-dimensional unit cube 

(2.2) C = I{(x,...,x8): 0 < xi<1 i= 1,2,...,}. 

When x is a real number, its fractional part is conventionally denoted by {x}. 
We extend this notation to vectors. 

Definition. {x} is a vector, each of whose components is the fractional part of 
the corresponding component of x. Thus {x} lies in the half-open cube U8, 

(2.3) Us = {(x1, ... ,x8): 0 < xi < 1, i = 1,2, ... I s}. 

It is convenient to define f(x), a periodic continuation of f(x) outside the unit 
cube. Thus f(x) = f({x}) for all x, and 

(2.4) f(x) = f({x}), {xi } $ 0, j = 1,2, ... , 8, 

so that f coincides with f in the interior of the unit cube. At points x = 

(x',x2,...,x8) on the boundary of the unit cube, f is generally not continuous. 
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At such points we define 

(2.5) f( ..x) = limZZ AZf(+rle,x +r+2,E..,x+rse), 
rl r2 r* 

with each r, taking only the values of +1 and -1. If f is continuous on C3 then 
this limit exists and is a symmetrical average of the values of f at corresponding 
points on opposite faces of the boundary. Thus, in the one-dimensional case, 

(2.6) (1) = (O)= (f(0) + f (1)). 

We now introduce the notion of a lattice. The simplest case is given by: 
Definition. The s-dimensional integer lattice is the set 

(2.7) Z8 = {(il,i2,...,is): ij E Z, j= 1,2,...,s}, 

where Z is the set of integers. In general: 
Definition. A lattice L is an infinite set of points in R8 with the following two 

properties: 
1. If x and x' belong to L then so do x ? x'. 
2. Each lattice point is the center of a sphere of finite radius containing no other 

point of the lattice. 
We are interested particularly in the following special class of lattices. 

Definition. A multiple-integration lattice is a lattice which contains the integer 
lattice Z8 as a sublattice. 

We are now in a position to define a lattice rule. 
Definition (Sloan and Kachoyan [12]). A lattice rule Qf is an approximation to 

If of the form 

(2.8) Qf= E xi) 
j=1 

where x1,x2,... , xN are all the distinct points of a multiple-integration lattice 
which lie in the half-open unit cube U8. 

Definition. The abscissa set A(Q) of a lattice rule Q is the set of quadrature 
points {x,X ... , XN} in the half-open cube U8. 

Note that in (2.8) it is possible to replace xj by xj + zj where zj E Z8. This 
is because f(xj) = f(xj + zj). In the definition of the abscissa set, we have taken 
care to remove this ambiguity. 

Thus, to every lattice rule Q there corresponds a multiple-integration lattice L, 
and the abscissa set of the rule is 

(2.9) A(Q) = Ln u8. 

The multiple-integration lattice corresponding to the number-theoretic rule 

(2.10) Qf = - E f(jz/N) 
j=1 

may be expressed in many forms, including 

(2.11) L = {jz/N: j = 1, 2,. .., N} + Z8 
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and the abscissa set is 

(2.12) A(Q) = {{jz/N}: j = 0,1, ... ,N - 1}. 

It may be noted that the arguments of f in the form (2.10) do not necessarily 
lie in U8, and therefore may differ from elements of A(Q) by integer vectors. As 
noted already, this is permitted by the periodic nature of f. For the same reason, 
it is merely a matter of taste whether the summation label in (2.10) runs from 1 to 
N, or say from 0 to N - 1. 

The only N-point one-dimensional lattice rule is the trapezoidal rule 

(2.13) T f =f (jf(j/N) = (pfo( + f&/N)+ f(1)) 

Note that the abscissa set A(T(N)) - {j/N: j = 0,1,... , N - 1} provides the 
abscissas of f, but that each function evaluation of f may involve more than one 
function evaluation of f. Thus what we have termed the N-point trapezoidal rule 
(also called the N-panel trapezoidal rule) requires N + 1 function values of f. 

We shall make frequent reference to the s-dimensional product-trapezoidal rule: 

ns 
l=1 j2= 1 i8=1n 

(2.14) n n n 

ns E E .. E ig + 222+ .,.+ Je 

where 

(2.15) ej = (bj,1, Ij,2 I *6j,9) =(0, , ... ,,1,0,.**,-0) 

is a unit vector having unit component in the xi direction and zero components 
otherwise. This lattice rule employs the lattice 

L = {(j1/n,j2/n, ... , j8/n): ji E Z, i = 1, 2,. .,s}. 
It is one of the oldest and simplest s-dimensional quadrature rules, but is seldom 
used because of its prohibitive cost in terms of function evaluations. 

A complicating feature of the theory of lattice rules is that the same rule may 
be expressed in many different ways: for example, the two-dimensional product of 
the 4-point and 3-point trapezoidal rules may be written as 

4 A-i (1,0) ___1 

(2.16) Qf = 1L Lfy 4 ) + j23) 
12j.i=1ji2=1 

43 

or as 

1 2 (314)\ (2.17) Qf= 12EZf i 12) 
3=1 

And the following four forms all represent the same five-point two-dimensional rule: 

(2.18) Qf!Zf(i(1'2)) 1?(.(214)) 

j=1 
5 5 ~j=1 

(2.18) 5 0 5- 
f(j 5 f(52 5 + 

1 J214) j11 (12) 2(3)1 
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Because of all this diversity, it is useful to study underlying properties of the 
lattice rules. First we treat an undisciplined form of the lattice rule. 

THEOREM 2.1. Any expresston of the form 

ni ni nt (2.19) ~ n 
Qf 

=t ; E .'.'. E f (2t Z+ 22+,, + 3tzt) 

where f(x) is the periodic continuation of f (x) defined above and zi belongs to the 
integer lattice Z8, is a lattice rule. 

Proof. First we note that the infinite set 

(2.20) { Z+ L2 + +.+ nt + Ekiei: ji, ki E Z} 

is a multiple-integration lattice L, but that the same point may occur for more than 
one choice of the indices. The abscissa set A(Q) corresponding to this lattice L is 

(2.21) {{zl + + + tZt ji=1,2,..,ni, i=1,2 t} 
ni n2 ntJ 

though again each point may appear more than once. It is straightforward to show 
that if the zero point 0 is repeated precisely k times in (2.21), then each point is 
repeated precisely k times. Thus, the rule Q is an equal weight rule, and is therefore 
precisely the lattice rule associated with the lattice L. 0 

Note that there are virtually no restrictions in the form (2.19). The zi may or 
may not be linearly dependent. The value of t may exceed s. The components of 
zi may or may not have a factor in common with ni. In any event, the abscissa set 
A(Q) of this rule comprises only the distinct elements of the set in (2.21). 

It is convenient to introduce some further definitions. 
Definition. The order v(Q) of the abscissa set A(Q) is the number of function 

values of I required by Q. 
Definition. The form (2.19) for Qf is termed nonrepetitive if each abscissa occurs 

only once. 
Definition. The form (2.19) for Qf is termed k-repetitive, or simply repetitive, if 

each abscissa occurs precisely k times and k > 1. 
If the form (2.19) is k-repetitive then v(Q) = nln2 . nt/k. If it is nonrepetitive 

then v(Q) = n1n2 ... nt. Later we shall use the following straightforward lemma. 

LEMMA 2.2. When the form (2.19) is nonrepetitive, the equation 

t iizi j22 .tZt ' 
(2.22) n n n *=0 

ni n2 nt 

holds for integers jl, 2, . j,t if and only if ji is a multiple of ni for all i. 

The following result about the elements of the abscissa set is of fundamental 
importance to our study of lattice rules. 

THEOREM 2.3. The elements X1,X2, ..., XN of the abscissa set A(Q) of a 
lattice rule Q form an abelian group under the group operation defined by 

xi plus xj = {Ix + X}. 



86 IAN H. SLOAN AND JAMES N. LYNESS 

The proof is trivial and is not given here. We note that the identity element is 0 
and that the inverse of xi E A(Q) is {-xi}. In the sequel we shall not distinguish 
between the set A(Q) and the group A(Q), and we shall use the + symbol both in 
its conventional sense and as the group operation symbol. 

For example, in (2.17) it is clear that the abscissas xj = {j(3,4)/12}, j = 

1,2, ..., 12, form a cyclic group of order 12, generated by (3, 4)/12. In the form 
(2.16), that cyclic group of order 12 is expressed as a direct sum of cyclic groups of 
orders 4 and 3. That is, defining 

C,=(1,0), C2= (0, 1) 
4 3 ' 

ce generates a cyclic group Ci of order n1 = 4 and c2 a cyclic group C2 of order 
n2 = 3, these two groups having only the zero element (0, 0) in common; and the 
elements of A(Q) are each expressible uniquely in the form xjl +xj2 where xjl E Cl 
and xj2 E C2. 

In the next section we shall collect together a selection of results from elementary 
group theory, which we shall use in Section 4 to construct a classification of lattice 
rules. 

3. Finite Abelian Groups. Many of the results of this paper depend critically 
on the structure of the group A(Q). In particular, decompositions of A(Q) into the 
direct sum of cyclic groups play a key role. The results stated here are standard 
results from the elementary theory of finite abelian groups, or are minor corollaries 
of such results. Here we simply provide a brief summary. At the end of the section 
we provide an example illustrating many of the concepts. 

The central result is: 

THEOREM 3.1. A finite abelian group G may be expressed (uniquely up to an 
isomorphism) in the form 

(3.1) G = Di eD2 E . EDm, 

where Dj is a cyclic group of order nj > 1, and 

(3.2) nj+lInj forj=1,...,m-1. 

In particular, the numbers m (the 'rank' of G) and n1, n2,... , nm (the 'invariants') 
are uniquely determined. 

Note that the product of the invariants is the order of the group. The theorem 
is proved, for example, in Ledermann [9, Section 4.5, Theorem 4]. In essence, 
the result is obtained by first representing G as a direct sum of cyclic subgroups, 
each of prime-power order, and then recombining, so that for a given prime p each 
cyclic subgroup whose order is a power of p is incorporated into a different one of 
D1,D2, ..., DmIn starting at the left with the subgroup with the highest power of 
p. Note that we may define the rank directly by: 

Definition. The rank m of a finite abelian group G is the smallest number of 
cyclic subgroups into which G may be decomposed. 



LATTICE QUADRATURE RULES 87 

Similar considerations lead to: 

THEOREM 3.2. Given a direct sum decomposition 

(3.3) G = E1 EE2 E. EEt 

into cyclic groups Ei of orders ni respectively, the group G is of rank m = t if and 
only if nl, n2 , ... , nt have a nontrivial common factor. 

We shall also find occasion to use the following theorem, which relates the rank 
and invariants of a subgroup to the corresponding quantities for the group itself. 

THEOREM 3.3. Let G, a finite abelian group with rank m and invariants nl, 
n2, ... ., nm, have a subgroup G' with rank m' and invariants n', n', . . ., n' . Then 
m> m', andCnni fori= 1,... ., m'. 

Proof. The result for the case in which G is of prime-power order is given in 
Hall [3, Theorem 3.3.3]. The general result then follows by expressing G and G' as 
direct sums of Sylow subgroups. OJ 

Next, we state a corresponding result for factor groups of G. (Recall that if H is 
a subgroup of the abelian group G, then the factor group G/H is the group formed 
by the 'cosets' x + H, with x E G. The identity in G/H is H. Loosely, the factor 
group G/H is the group obtained from G by treating as equivalent any elements of 
G that differ by an element of H.) 

THEOREM 3.4. Let H be a subgroup of a finite abelian group G having rank m 
and invariants nl, n2,... , nm m and let G/H have rank m' and invariants n', n',.... 

n/ . Then m > m', and n. I ni for i =1,...,m'. 

Proof. Because G is a finite abelian group, G/H is isomorphic to some subgroup 
of G (see Hungerford [6, p. 82, Ex. 14]). Thus the result follows immediately from 
Theorem 3.3. 0 

We conclude the section with an example of a particular group of order 12, 

A Gdirctsu represntatio of G in th mane of Theore 3.1 is1 

G = {?v?v) ' 6'? 3- 3 (3-'? 3) (2'?? (3'? 3) 

(3.6) G=D21 
1 1eD2, 11 

(3 4) (~6'? 13) '3' 2' 6) '2' 2' 2) (3' 2' 6) ' 

t6, 2 ,6-JV 2' 2 6' 2'6J 

with addition modulo 1. This group is the abscissa set for a lattice rule Q with 
lattice 

(3.5) L = {j 60, 
1 

+ j2 23- 1, +Z3: jl, j2 E Z} 

A direct sum representation of G in the manner of Theorem 3.01 is 

(3.6) G =D, E) D2, 

where 

(3.7) Di = j(,,, :j=01, ... .5 , 
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the cyclic group of order 6 generated by (, 6 ' ), and 

(3.8) D2 = {(O?oo)i (?' 2' O )} 

The invariants of G (that is, the orders of D1, D2) are 6,2; note that, as required, 
the second divides the first. 

To illustrate the properties of the factor group G/H, we take as H the order 2 
subgroup 

(3.9) H = {(010?)l (2'??)0 

Each element of G/H is a coset of the form 

(3.10) x+H= {x+(0,00), x+ ( '?+ 

where x is an element of G. It will be found that the six cosets form a cyclic group, 
generated by the element 

{6 12 6) (3' 26) 
Thus, this particular factor group has rank 1 and sole invariant 6, in conformity 
(since the rank does not exceed 2, and since 6 divides 6) with Theorem 3.4. 

4. Classification of Lattice Rules. In this section we employ the results of 
Section 3 to classify lattice rules. 

Given a lattice rule Q, the abelian group formed by the abscissa set A(Q) may 
be expressed (usually in many different ways) as a direct sum of cyclic groups, 

(4.1) A(Q) = Ci E3C2 E* *E Ct. 

Corresponding to this we have: 

THEOREM 4. 1. A lattice rule Q is expressible as a nonrepetitive form 

(4.2) ~~~ nn n2 nt 1 f(1l Zi 2 + .+jtZt) (4.2)= 1f+j 

Proof. If the cyclic group C; in (4.1) is of order ni then Ci has at least one 
element of that order; we call one such element ci and choose zi = nict. 0 

Comment. Clearly, v(Q) = n1n2 ... nt. This theorem is a converse of Theorem 
2.1 (which states that any Qf of form (4.2) is a lattice rule). We refer to (4.2) as 
a t-cycle form of the rule Q. 

Conversely, a lattice rule Q given in nonrepetitive forn (4.2) yields immediately 
a direct sum decomposition of the abscissa set (4.1), the group Ci in (4.1) being 
generated by zi/ni. 

The 1-1 correspondence between (4.1) and (4.2) allows us to transcribe many of 
the results about group decomposition in Section 3 to results about nonrepetitive 
representations of Q of form (4.2). The definitions of rank and invariants are also 
applied to lattice rules Q. Thus we have: 

Definition. The rank m of a lattice rule Q is the least possible value of t for 
which A(Q) may be expressed in form (4.1) or Qf in form (4.2). 
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By extension, the trivial one-point lattice rule TW), for which the abscissa set is 

A(T(-)) = {O}, will be said to have rank 0. 

Definition. The form (4.2) of a lattice rule Q is said to be minimal if t = m, 
where m is the rank of Q. 

It is useful to be able to determine whether or not a given expression of a lattice 
rule is minimal. This turns out to be straightforward if the form is nonrepetitive. 
Theorem 3.2 gives immediately: 

THEOREM 4.2. A nonrepetitive form (4.2) is minimal i and only if nl, n2, 

nt have a nontrivial common factor. 

The following is a useful property of a nonrepetitive minimal forn of a lattice 

rule. 

THEOREM 4.3. If the form (4.2) is nonrepetitive and minimal (implying t = 

m), then the vectors Zl,z2,... ,Zm are linearly independent (with respect to the 
rational field). 

Proof. Obviously it is sufficient to establish the linear independence of the vectors 

C. = zi/n-, i = 1,2, ... ,m. Suppose the contrary. Then there exist rational 

numbers A1, A2, ... ,Am, not all zero, such that 

(4.3) A1c, + A2c2 + . + AmCm = 0. 

Without loss of generality we may assume that A1, A2, .. , Am are integers, with no 

nontrivial overall common factor. It follows immediately that 

(4.4) {Aic, + A2c2 + *.. + Amcm} = 0. 

Since the rule is assumed to be nonrepetitive, it follows from Lemma 2.2 that 

(4.5) Ai is a multiple of ni, i = 1,2, ... .,m. 

But because the rule is also minimal, it follows from Theorem 4.2 that the numbers 

n I, . .., nm must have a nontrivial common factor, say a, and since we have shown 

that Ai is a multiple of ni, it now follows that a is a common factor of each of 

A1, *. , Am- Since this gives a contradiction, the result is proved. 0 

There follows an important consequence: 

COROLLARY 4.4. The rank m of an s-dimensional lattice rule satisfies 1 < 
m < s. 

Now we state the main theorem of this section. This is an immediate transcrip- 

tion of Theorem 3.1, but incorporates the result of Theorem 4.3 above. 

THEOREM 4.5. An s-dimensional lattice rule Q can be expressed as a nonrepet- 
itive form 

n1 n2 nm 
(4.6)____ Qf3I E E E ]lZl 32Z2 3mzm 
(4-6) Qf f~I ~i + 

~ 
2 

. 
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where m (the 'rank') and ni, n2, ... , nm (the 'invariants') are uniquely determined 
natural numbers satisfying 1 < m < s and 

(4.7) ni+1 Inin i= 1,..., m-1; nm >1. 

The vectors Z,Z2 , . . X Zm are linearly independent. 

A lattice rule satisfying the conditions of this theorem will be said to be in 
canonical form. 

We now extend slightly the definition of the invariants. 
Definition. A lattice rule satisfying the conditions of Theorem 4.5 (and therefore 

being of rank m) will be said to have invariants n1, n2, - n, n, with ni, n2, ... I nm 
taking the values in (4.7) and nm+1 = nm+2 = -- = n, = 1. 

It is often convenient to suppress the trivial invariants, that is those whose value 
is 1. The nomenclature then corresponds precisely to that for the abscissa set A(Q) 
regarded as a group. Note that the product of the invariants is the number v(Q) 
of abscissas. 

COROLLARY 4.6. A quadrature rule which can be expressed as a nonrepetitive 
form (4.6) with n1, n2,... , nm satisfying (4.7) is a lattice rule with rank m and 
invariants n1, n2,* nm 

This follows from Theorem 2.1 together with the uniqueness provision of Theo- 
rem 4.5. 

We conclude with an example. Suppose 

1 6 6A t(5,O,2) _4_3_1 
(4.8) Qf= 36 E+E '(4 ,3,))' 

i1=1ji2=16 

The reader will easily verify, by writing out the abscissas, that this form of the 
rule is repetitive, and that the abscissa set A(Q) contains just 12 points, namely 
those given in (3.4). Thus, this example has already been analyzed in Section 3. 
The direct-sum representation (3.6)-(3.8), conforming as it does to Theorem 3.1, 
corresponds to the expression 

(4-9) Ql=12 Q =__' 6 + j2 ) 12 6~~ 3 2 

which is precisely of the canonical form described in Theorem 4.5. This 3-dimen- 
sional rule has rank 2 and invariants 6, 2, 1; or, more briefly, invariants 6, 2. 

5. Rule Projection. Given an arbitrary quadrature rule Qf for the s-dimen- 
sional cube C1, 

v 

(5.1) Qf wjf(Xj Ij) 
j=1 

we define an s'-dimensional projection Q'f, with s' < , to be any rule obtained by 
omitting s - s' specified components. Most simply, if the last s - s' components 
are omitted, we obtain the principal s'-dimensional projection of Q, namely 

v 

(5.2) QIf Wif(xj, .., XI,) 
3=1 
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which is a quadrature rule (possibly in repetitive form) over the s'-dimensional cube 

In the case of a lattice rule, every projected rule has a structure that derives 
from that of its parent: 

THEOREM 5.1. Let Q be an s-dimensional lattice rule having rank m and in- 
variants n1, n2,..., nm. Any s'-dimensional projection Q' is a lattice rule having 
rank m' < m and invariants n, ,n ,, where n' Ini for i = 1,2,... ,m'. 

Proof. The abscissa set A(Q) has a subgroup H consisting of all the abscissas 
whose only nonzero components (if any) are omitted in the formation of Q'. In 
other words, H consists of the abscissas that project onto the origin. Then A(Q') 
is isomorphic to the factor group A(Q)/H (see Section 3), and the theorem is an 
immediate consequence of Theorem 3.4. 0J 

COROLLARY 5.2. Let Q be an N-point s-dimensional lattice rule, and let Q' be 
an s'-dimensional projection. If Q' has N distinct abscissas, then Q' has the same 
rank and invariants as Q. 

Proof. This follows immediately from Theorem 5.1 and the fact that the product 
of the invariants of Q' is the same as the product of the invariants of Q, since both 
are equal to N. O 

To illustrate rule projection, we return to the 3-dimensional rule (4.9), 

j1=1ji2=1 (5 3) Qf =12 E E~ E 
y?1 ('6' +3j2 ('2' 

whose abscissas are listed in (3.4). Being already in the standard form of Theorem 
4.5, this rule manifestly has rank 2 and invariants 6, 2. 

There are three two-dimensional projections of this rule, into the x1, x2 plane, 
the x1, x3 plane, and the x2, x3 plane. These are respectively the two-dimensional 
rules 

1 6 2 \i(1,3) (071)) 
(5.4) Q12f = 12 E E. 6 + j2 2 

i1=l 32=1 

(5.5) Q3f=j!i 

6 
(1,1) (0,1) ~ (5-5) Q13f = 12 E E E 6 +j2 2 )' 

ji= j2=1 

(5.6) Q23f Vf( + j2 (1) __6 

By inspection, the first two are in nonrepetitive form, and so have rank m = 2 and 
invariants 6, 2. The third appears first in a repetitive form, but as indicated may 
be rewritten in nonrepetitive form with rank 1 and invariant 6. 

The key to predicting this situation is to examine the list of abscissas (3.4) of Q 
to see how many project into the origin. In the first two cases, Q12 and Q13, only 
one element projects to (0, 0). We have then the uninteresting case in Theorem 5.1 
in which H is the identity and A(Q)/H is isomorphic to A(Q). In the third case, 
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pertaining to Q23, inspection of the list (3.4) shows that two elements project to 
(0, 0). These two elements now constitute H, i.e., 

H = {(010,O)' (2'?'?) }' 

giving immediately that A(Q)/H is of order 6. The group A(Q)/H is described in 
Section 3 and is seen there to be a cyclic group of order 6. The import of Theorem 
5.1 is that the abscissa set A(Q23) is isomorphic with this group, and so is also 
a cyclic group. Thus A(Q23) has rank 1 and invariant 6, in agreement with the 
statement above for the rule Q23. 

6. n8-Copy Rules. The n8-copy Q(n) of a general quadrature rule 

(6.1) Qf = E wjf(xj) 
j=1 

for the unit cube CS is the rule obtained by subdividing C' into n' cubes each of 
side n- 1, and applying a properly scaled version of the rule Q to each smaller cube. 
Specifically, 

n-1 n-I n-1 i 7 (kIk2 k,) xi 

ki =0 k2=0 k.=Oj=l 

In particular, with the aid of (2.5), the n8-copy of the lattice rule (2.8) is 

(6.3) Qn)f = 
WN E E . E E! n(k X k2, n s 

k10k2=O k,=Oj=l 

THEOREM 6. 1. The n8-copy of a lattice rule is a lattice rule. 

Proof. This follows from the original definition of a lattice rule through an infinite 
lattice L. Defining a lattice L(n) by 

(6.4) x e L x/n e L(n), 

we find directly that the lattice rule constructed using L(n) is precisely the n8-copy 
rule. 0 

For example, the n8-copy of the one-point rule Ts')f - f(O) is the n8-product 
trapezoidal rule T., . The product trapezoidal rule plays a central role in the study 
of n8-copy rules. From the definition (2.14) and Corollary 4.6 we have immediately: 

LEMMA 6.2. The n8-product trapezoidal rule T, is a lattice rule of rank s 

and invariants n, n, . . , n. 

And from the definition (6.3) of the n8-copy Q(n) we have: 

LEMMA 6.3. The abscissa set A(Q(n)) of the n8-copy of a lattice rule Q con- 

tains the abscissa set A(T(n)) as a subgroup. 

THEOREM 6.4. The n8-copy of a lattice rule is a lattice rule of rank s. The s 

invariants all have n as a common factor. 

Proof. It follows from Lemmas 6.3 and 6.2 and from Theorem 3.3 that there are 
s invariants of A(Q(n)) all having n as a factor. 0 
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LEMMA 6.5. If the s-dimensional lattice rule Q is expressible in nonrepetitive 
form as 

(6n 1 ni 2 
n,8 / z1 jz2i 

(6.5) Qf nln2 * + +* *+ 
)1 =1 i2=1 )s=1 

where all ni have a factor k > 1, then Q is the k8-copy of the rule 

Pf= _______ 

2 V 

riz1 r2Z2 r, z 

VlV VV2 ... 
___V + 2 + V s) 

( rl=1 r2=1 r8=1 (VS 

with vi ni/k, i = 1,2,...,Is. 

Proof. In the expression (6.5) we may decompose the sum over ji by setting 

(6.7) ji = livoi+ ri, i = 1,2, ...,s,1 

and summing li over 0,1, .. . ,k - 1 and ri over 1,... ., vi. Thus we obtain 

1 k-1 
k-i v1 v8 

Qf kv,v2 ..vs 11=0 1.=Ori=l r.,= 1 
(6.8)10 1=r=1 r1 

1(,Zi,~Z2 + +Zs Zi ' x f (1 
Zl 

+ 12 k- I + ri k 1 + + r,,ks 

Because Q has n1n2 ... n, distinct abscissas, all the quadrature points in the latter 
expression must be distinct. In particular, the k8. points 

(6.9) {lk+ .+ls }, li=0,1,...,k-1, i=1,...,s, 

must be distinct, and so these must be just the abscissas of the k8-point product 
trapezoidal rule Tl(k) taken in a different order. 

Thus, Q is expressible as 

k-1 k-i v1 V., 

(6.10) k1=O k8=Orl=l r8= 

((ki, k2, ... ,k,) Zl +' 

which according to (6.3) is just the k8-copy of the rule (6.6). 0 
The following theorem is an immediate corollary of this lemma. 

THEOREM 6.6. Any 8-dimensional lattice rule of rank s having invariants 
ni,n2,... , n8 is the n'-copy of a lattice rule of rank less than s having invariants 
nh /ns, n2/ns,.. .,n/ns. 

Proof. This follows from choosing ni, n2,... ,n8 in Lemma 6.5 to be the invari- 
ants of Q and setting k = n8. In this case we have ni+ 1 ni, so all ni have the 
common factor k = n8. This implies vi+1 j vi and v, = 1. Since (6.6) is a nonrepet- 
itive form, it follows that Pf has invariants Vl, V2 . . . V s; thus the copied rule Pf 
is of rank m, where m is the largest value of t for which vt > 1 (or the largest value 
of t for which nt > n). 0 

The following theorem is a converse. 
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THEOREM 6.7. The n8-copy of an s-dimensional lattice rule Q having invari- 
ants ni 2,2 ,.. , n8 is a lattice rule having invariants nnl, nn2, ... , nn. 

Proof. From Theorem 6.4 the n8-copy of Q has invariants having an overall 
factor n. Suppose these are n,u ,n,u2,... ,n,un. Then Lemma 6.5 tells us that Q 
itself has invariants l i, 2,.. ., But since the invariants of Q are nl, n2, .. ., n, 

the theorem follows. 0 

We close by remarking that the converse of Lemma 6.5 is not true. The situation 
is that when form (6.5) is nonrepetitive, then as we have shown, so is form (6.6), and 
Q is the k8-copy of P. But when we start with a form (6.6) which is nonrepetitive 
and construct (6.5), we may either find Qf to be nonrepetitive and to be the k8-copy 
of P, or find Qf to be repetitive and to have an abscissa set A(Q) c A(P(k)). 

Acknowledgment. We are grateful to Drs. P. Donovan and D. Hunt of the 
University of New South Wales for assistance with aspects of the theory of finite 
abelian groups, and to the Australian Research Grants Scheme and the U. S. De- 
partment of Energy for generous financial support. 

School of Mathematics 
University of New South Wales 
Sydney, N.S.W. 2033, Australia 

Mathematics and Computer Science Division 
Argonne National Laboratory 
9700 South Cass Avenue 
Argonne, Illinois 60439-4844 

1. H. CONROY, "Molecular Schr6dinger equation, VIII: A new method for the evaluation of 
multidimensional integrals," J. Chem Phys., v. 47, 1967, pp. 5307-5318. 

2. R. CRANLEY & T. N. L. PATTERSON, "Randomization of number-theoretic methods for 
multiple-integration," SIAM J. Numer. Anal., v. 13, 1976, pp. 904-914. 

3. M. HALL, JR., The Theory of Groups, Macmillan, New York, 1959. 
4. E. HLAWKA, "Zur angenaherten Berechnung mehrfacher Integrale," Monatsh. Math., v. 66, 

1962, pp. 140-151. 
5. HUA Loo KENG & WANG YUAN, Applications of Number Theory to Numerical Analysis, 

Springer-Verlag, Berlin, Science Press, Beijing, 1981. 
6. T. W. HUNGERFORD, Algebra, Springer-Verlag, New York, 1974. 
7. P. KEAST, "Optimal parameters for multidimensional integration," SIAM J. Numer. Anal., 

v. 10, 1973, pp. 831-838. 
8. N. M. KOROBOV, "The approximate computation of multiple integrals," DokI. Akad. Nauk 

SSSR, v. 124, 1959, pp. 1207-1210. (Russian) 
9. W. LEDERMANN, Introduction to the Theory of Finite Groups, Oliver and Boyd, Edinburgh, 

1964. 
10. H. NIEDERREITER, "Quasi-Monte Carlo methods and pseudo-random numbers," Bull. 

Amer. Math. Soc., v. 84, 1978, pp. 957-1041. 
11. I. H. SLOAN, "Lattice methods for multiple integration," J. Comput. AppI. Math., v. 12 and 

13, 1985, pp. 131-143. 
12. I. H. SLOAN & P. J. KACHOYAN, "Lattice methods for multiple integration: theory, error 

analysis and examples," SIAM J. Numer. Anal., v. 24, 1987, pp. 116-128. 
13. S. K. ZAREMBA, "La m6thode des "bons treillis" pour le calcul des int6grales multiples," 

in Applications of Number Theory to Numerical Analysis (S. K. Zaremba, ed.), Academic Press, 
London, 1972, pp. 39-116. 


